Extensions 1→N→G→Q→1 with N=C32 and Q=D24

Direct product G=N×Q with N=C32 and Q=D24
dρLabelID
C32×D24144C3^2xD24432,467

Semidirect products G=N:Q with N=C32 and Q=D24
extensionφ:Q→Aut NdρLabelID
C32⋊D24 = He33D8φ: D24/C4D6 ⊆ Aut C327212+C3^2:D24432,83
C322D24 = C322D24φ: D24/C6D4 ⊆ Aut C32248+C3^2:2D24432,588
C323D24 = He34D8φ: D24/C8S3 ⊆ Aut C32726+C3^2:3D24432,118
C324D24 = He35D8φ: D24/C8S3 ⊆ Aut C32726C3^2:4D24432,176
C325D24 = C338D8φ: D24/C12C22 ⊆ Aut C3272C3^2:5D24432,438
C326D24 = C339D8φ: D24/C12C22 ⊆ Aut C32484C3^2:6D24432,457
C327D24 = C3×C325D8φ: D24/C24C2 ⊆ Aut C32144C3^2:7D24432,483
C328D24 = C3312D8φ: D24/C24C2 ⊆ Aut C32216C3^2:8D24432,499
C329D24 = C3×C3⋊D24φ: D24/D12C2 ⊆ Aut C32484C3^2:9D24432,419
C3210D24 = C337D8φ: D24/D12C2 ⊆ Aut C3272C3^2:10D24432,437

Non-split extensions G=N.Q with N=C32 and Q=D24
extensionφ:Q→Aut NdρLabelID
C32.D24 = D72⋊C3φ: D24/C8S3 ⊆ Aut C32726+C3^2.D24432,123
C32.2D24 = C3⋊D72φ: D24/C12C22 ⊆ Aut C32724+C3^2.2D24432,64
C32.3D24 = C3×D72φ: D24/C24C2 ⊆ Aut C321442C3^2.3D24432,108
C32.4D24 = C721S3φ: D24/C24C2 ⊆ Aut C32216C3^2.4D24432,172

׿
×
𝔽